
Chapter 31

Introducing Swing

Limitations of AWT

 AWT defines basic set of controls, window and
dialog boxes that provide limited GUI.

 Look and feel of AWT components is defined by
platform not by JAVA.

 Because of variation between OSs, a component
might look or even act differently on different
platforms.

 AWT components use native code, they are
refered as heavyweight.

 Heavyweight components are always opaque.

Swing

 Swing is built upon AWT (Abstract Window
Toolkit) introduced in 1997.

 Swing eliminates a number of limitations
inherent in AWT, Swing does not replace it.

 Swing also uses same event handling
mechanism as the AWT.

 Two key features of Swing:

 Lightweight components

 A pluggable look and feel

Contd...

 Lightweight component means they are written
entirely in JAVA and do not map directly to
platform specific peers.

 Lightweight components are more efficient and
flexible.

 As lightweight components do not translate into
native peers, each component look and feel is
consistent across all platform.

Contd...

 Swing supports a pluggable look and feel
(PLAF). Because each swing component is
rendered by java code rather than by native
peers, the look and feel of a component is
under control of swing.

 Hence, it is possible to seperate the look and feel of
a component from logic of the component.

 This implies it is possible to change the way a
component is rendered (plug-in a new look) without
affecting any of its other aspects.

 Advantages of PLAF:

 Consistent look and feel of components across all
platforms can be defined.

Components and Containers

 A Swing GUI is consist of two key items:

– Components

– Containers

 Component is an independent visual control
such as push button or slider.

 A container holds a group of components. So,
Container is a special type of component that is
designed to hold other components.

– Since a container is also a component. So, A
container can also hold other containers.

– This enables Swing to define what is called a
containment heirarchy.

Components and Containers

 Swing components are derived from
JComponent class. JComponent support
pluggable look and feel. JComponent inherits
AWT classes Container and Component.

 All of Swing’s components are defined withing
package javax.swing

Class names for Swing components

JApplet JButton JCheckBox JCheckBoxMenuItem

JColorChooser JComboBox JComponent JDesktopPane

JDialog JEditorPane JFileChooser JFormattedTextField

JFrame JInternalFrame JLabel JLayer

JLayeredPane JList JMenu JMenuBar

JMenuItem JOptionPane JPanel JPasswordField

JPopupMenu JProgressBar JRadioButton JRadioButtonMenuItem

JRootPane JScrollBar JScrollPane JSeparator

JSlider JSpinner JSplitPane JTabbedPane

JTable JTextArea JTextField JTextPane

JTogglebutton JToolBar JToolTip JTree

JViewport JWindow

Container
 Swing defines two types of containers:

 Top-level containers:

 JFrame, JApplet, JWindow and JDialog.

 These containers are at top in containment
heirarchy and they are heavyweight compare to
other Swing’s components.

 Commonly used top level container is Jframe.

 Lightweight containers:

 JPanel

 These are inherited from Jcomponent.

A Simple Swing Application

import javax.swing.*;

Class SwingDemo

{ SwingDemo()

{ //create a new Jframe container.

JFrame jfrm = new JFrame(“A Simple Swing
Application”);

// Give the frame an initial size

jfrm.setSize(275,100);

// Terminate the program when user closes the application.

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_C
LOSE);

Contd...
//create a text-based label.

JLabel jlab = new JLabel(“Swing means powerful GUIs”);

// Add the label to the content pane.

jfrm.add(jlab);

// Display the frame.

jfrm.setVisible(true);

}

public static void main(String args[])

{ //create the frame on the event dispatching thread.

SwingUtilities.invokeLater(new Runnable() {

public void run() {

new SwingDemo(); } });

} }

Contd...

 void setDefaultCloseOperation(int what):

 The value in what determines what happens
when the window is closed. There are several
options for that:

 DISPOSE_ON_CLOSE

 HIDE_ON_CLOSE

 DO_NOTHING_ON_CLOSE

 EXIT_ON_CLOSE

 Their name reflects their actions.

Contd...

 To add a component (ex. Label) to a container
(ex. Frame), it needs to be added to frame’s
content pane.

 General form to add a component is:

 Component add(Component comp)

 By default the JFrame is invisible. So,
setVisible(true) must be called to show that
frame.

Contd...

SwingUtilities.invokeLater(new Runnable() {

public void run() {

new SwingDemo(); } });

 This sequence causes a SwingDemo object to be created
on the event dispatching thread rather than on main thread of
the application. Because

• In general, Swing programs are event-driven. For
example, when a user interacts with a component,
an event is generated. An event is passed to the
application by calling an event handler defined by
the application. However, the handler is executed
on the event dispatching thread provided by
Swing and not on the main thread of the
application. Thus, although event handlers are
defined by your program, they are called on a
thread that was not created by your program.

Event Handling

 The event handling mechanism used by Swing
is the same as that used by the AWT. This
approach is called the delegation event model.

 Events specific to Swing are stored in
javax.swing.event.

Contd...

// Handle an event in a Swing program.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class EventDemo {

JLabel jlab;

EventDemo() {

// Create a new JFrame container.

JFrame jfrm = new JFrame("An Event Example");

// Specify FlowLayout for the layout manager.

Contd...

// Make two buttons.

JButton jbtnAlpha = new JButton("Alpha");

JButton jbtnBeta = new JButton("Beta");

// Add action listener for Alpha.

jbtnAlpha.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent ae) {

jlab.setText("Alpha was pressed.");

}

});

Contd...

// Create a text-based label.

jlab = new JLabel("Press a button.");

// Add the label to the content pane.

jfrm.add(jlab);

// Display the frame.

jfrm.setVisible(true);

}

public static void main(String args[]) {

// Create the frame on the event dispatching
thread.

